Sweating the small stuff---the influence of metabolite extraction and separation on metabolomic studies

Andrew D. Patterson, PhD Assistant Professor of Molecular Toxicology Penn State University adp117@psu.edu

Excellent References

- Mass spectrometry-based metabolomics
- <u>Xenobiotic metabolomics: major impact on</u> <u>the metabolome</u>
- <u>The intestinal metabolome: an intersection</u> <u>between microbiota and host</u>

Metabolomics
 Metabolomics is the systematic analysis of the unique chemical fingerprints left behind by specific cellular processes
 These small molecule metabolite profiles provide insight into cellular status.
 All "-omics" based scientific disciplines aim at the collective characterization and measurement of their particular constituent molecules A comprehensive approach to study complete pools of biological molecules Defines the structure, function and dynamics of an organism.
 Vast chemical diversity among small molecule metabolites has made extended coverage of the metabolome challenging

- Size (50 1500 Da)
- Concentration (pM mM)
- Physicochemical properties (diverse log P values)
- Stereochemistry (distinct biological activity)

Metabolite Extraction

- Currently no analytical technique exists that is capable of *in-situ* measurement of all classes of cellular metabolites
- Metabolite extraction therefore becomes a crucial step in any type of metabolomics study
 - Critical to both targeted and global based profiling strategies.
- Optimized extraction methodology should fulfill several criteria:
 - Extract the largest number of metabolites
 - Unbiased and non-selective physical or chemical properties of a molecule
 - Non-destructive no modification of metabolites

Separation of Metabolites

- Mass spectrometry usually requires some form of chromatographic separation
 - Most systems use either liquid or gas chromatography
 - CE-MS gaining popularity
- Fractionation of sample components simplifies the resulting mass spectra while ensuring more accurate compound identification
 - Capacity factor (k) is critical to optimizing resolution
 - Increased resolution allows longer MS dwell times resulting in better signal/noise ratios
- Inadequate chromatographic separation of metabolites results in:
 - signal suppression ion suppression
 - compromised metabolite quantification
 - reduced metabolite coverage

Hypothesis

Extraction and separation of metabolites may influence metabolomic studies as much as the disease process being investigated

Rationale

Developing optimized protocols for extraction efficiency and chromatographic resolution based on metabolite class and/or characteristics will dramatically improve accuracy and reproducibility of metabolomic data sets.

1/12/2015

METABOLOMICS FOR UNDERSTANDING DRUG TOXICITY---ACETAMINOPHEN

<section-header><section-header><section-header><section-header>

- Contained in 100s of products
- One of the most common pharmaceuticals associated with accidental and intentional poisoning (>7 g per adult per day)
- APAP overdose serves as a model for drug-induced liver toxicity
- Excess NAPQI (<u>with reduced</u> <u>glutathione levels</u>) leads to oxidative damage and inflammation leading to hepatocellular death/necrosis

IDA Metabolite ID Workflow

- 1. Conventional LC-MS survey scan used to trigger LC-MS/MS product ion acquisition
- 2. Up to 50 MS/MS product ions for each survey scan, optimal number 5-20
- 3. Optimal values are dependent on chromatographic peak widths and sample complexity
- 4. Compromise between missing a compound and acquiring many noisy unusable spectra
- 5. Dynamic background subtract
- 6. Collision energy spread

IDA Metabolite ID Workflow

- Autonomous acquisition of product ion spectra
- No product ion m/z list generation, sample repreparation or chromatographic realignment required
- Ideally high quality MS/MS product ion spectra acquired for all components present in mixture
- If subsequent data analysis reveals previously unidentified features, have archived MS/MS product ion spectra

Lipid Extract IDA Workflow

- Bovine liver total lipid extract 0.5 mg/ml (Avanti)
- Gradient elution aqueous isopropanol/acetonitrile w/ 10mM ammonium formate 0.1% formic acid
- Waters CSH[®] 2.1 x 100 mm C18 column
- Up to 20 IDA scans (100 ms)
- 2.1s duty cycle
- Exclude for 10 s after 1 occurrence
- Product ion m/z 150-1150
- Total 3408 product ion mass spectra

Graph	Table	
Retenti	on Time	versus Parent Mass/Charge for IDA Dependents
	850 1	
	848 -	846.5382/10.49 846.5779/1 ZOOM to m/z
	846 -	844.5222/8.02 844.5251/8.85 846.5373/10.34
	844 -	842.5853/4.40 842.5563/7.94 844.5230/8.24 842.4399/12.11 SOO-SO
	842 -	* 840.5684/5.26
	840 -	840.6349/0.82 840.5723/4.43 840.5519/6.88 838.7078/10.60
	838 -	836.5983/3.70 838.6342/4.39 838.5275/7.06 838.6921/1
	836 -	834.5833/2.84 834.5833/3.44 837.5104/6.56 836.5359/9.99
	834 -	832.5695/3.67 834.5965/6.80 - 835.4836/7.98 832.5765/9.16 834. 258 MS/MS
	832 -	830.5467/2.69 832.5788/8.77 // 834.5954/11.32
	830 -	828.5492/6.83 830.5646/7.64 830.5573/10.48
Da	828 -	828.5456/8.58 828.5448/9.64 826.5680/14.69 829.7078/15.95
arge,	826 -	824.5789/6.30 824.4520/10.18 ====================================
ss/Ch	824 -	824.5735/5.88 - 4 822.5594/5.31 824.5728/6.50 822.5964/12.26 824.6117/14.16 825.5984/17.80
Ma	822 -	820.6012/4.72 822.5621/6.61 820.5806/9.61 822.5913/11.51 822.6334/14.58 821.5095/19.07
	820 -	818.5493/3.98 818.5878/5.23 820.6042/7.60 820.5777/11.02 820.6785/13.29 821.5982/16.06 822.7491/18.05
	818 -	818.5968/4.66 818.5040/8.45 818.55839/12.57 820.7336/17.77
	816 -	814.5545/3.63 816.5743/4.43 814.5804/7.49 816.5276/9.88 814.6279/14.88 814.6279/14.88
	814 -	812.5196/5.07 814.5067/18.16
	812 -	810.5020/5.12 812.5396/10.63 812.5396/10.63 813.6805/15.18 813.6805/15.18 813.6859/17.80
	810 -	803.6313/10.75-0 811.6225/12.22 T 811.6737/17.58
	808 -	808.5695/2.68 - 809.6145/3.52 806.5660/8.88 808.6106/10.03 810.5006/11.16 810.7125/16.60 1 810.7714/17.79
	806 -	806.5647/8.01 - 806.5656/8.58 806.5647/9.63 806.5974/13.10
	804 -	802.5925/6.87 804.6045/8.05 804.5472/9.69 804 5841/12.82
	802 -	802.5915/6.15 - 802.5922/7.90 802.5731/11.36 800.6122/14.57
	800 -	• • • • • • • • • • • • • • • • • • •

Lipid Extract IDA Workflow

- Limit m/z range to 50-200 Da increments
- Up to 10 IDA scans (200 ms)
- 2.1s duty cycle
- Exclude for 10 s after 2 occurrences
- Product ion m/z 800-850
- Total 1564 product ion mass spectra

Graph	Table	
Retenti	tion Time versus Parent Mass/Charge for IDA Dependents	
	848 - 847.6044/1.70 848.5808/7.35 846.6847/9.71	
	846 846.6875/1.03 846.6839/4.97 844.5957/9.70	IARGEIED
	844 846.6561/0.14 845.5019/2.99 844 6784/6 70 944 6074/7 79	
	842 843.5788/2.02 843.6799/4.71 840.5201/3.39 840.5757/5.97 842.5945/8.60	m/z 800-850
	840 - 840.5740/0.84 838.5505/3.07 841.6326/6.04 840.5564/7.75	
	838 - 838.6390/0.09 836.6046/3.93 839.4960/5.19 838.5394/6.78	•
	836 - 834.5844/2.94 836.5527/5.71	•
	834 - 834.6206/1.35 834.5876/3.05 835.5340/8.49	
	832 - 834,5145/2.50 831.3447/3.62 834,5002/7.32 834,500	
	830 - 829.122/6.25 • • • • • • • • • • • • • • • • • • •	
	828 826 5994/3 03 000 505 1440 829 4997/7 47	
e, Da	825 3735/1.22 825 5010/2 70 826 5010/2 70 826 5010/2 70 826 5010/2 70	
harg	824 825 3475/1 07	
lass/D	824.5552/2.93 824.5552/2.93	· · · · · · · · · · · · ·
~	820 821.5667/1.01 821.633/5.09 821 4919/9 66	
	818 819.5228/1.31 819.5552/4.17 819.5552/4.17	
	816 816.5984/2.28 817.0736/5.93 818.5924/6.62	\$18.8250/18.36
	814 813.5375/3.44 - 814.5629/6.08 815.0585/10.25	
	812 814.5170/3.23 814.5610/8.24 814.5610/8.24 812.5434/4.04 810.6845/9.61	814.8027717.53
	810 812.3332/1.75 811.6589/5.89	
	808 - 810.5281/4.53 809.4648/7.67	
	806 807.3657/4.50 806.5724/8.50	
	804 804.51/23/2.91 806.5876/4.39 804.61/24/7.98	904 7792/17 74
	802 800.5950/1.92 803.4732/3.66 803.4546/5.73	
		13 14 15 16 17 18 19

25

Lung Cancer Biomarkers

- · Most common cause of cancer deaths worldwide
- Training Set
 - 536 population controls, 469 lung cancer patients (pretreatment)
- Validation Set
 - 78 population controls, 80 lung cancer patients
- Quantitation Set
 - 106 population controls, 92 lung cancer patients
- Tumor Tissue Set
 - 48 non-tumor, 48 tumor

N =469 cases, 536	LC/MS) controls	B. (unt N =8	B. Validation Set (untargeted UPLC/MS) N =80 cases, 78 controls		
0.08 ₹ 0.06- ₹	=2.7	0.2 80.15 4 0.15	FC=1.6 FC=1.6		
Sie	gnal		95% CI		
Creatine ribo	side	0.99	0.98 - 0.99		
V-acetylneur	aminic acid	0.82	0.71 - 0.92		
Cortisol sulfa	ate	0.99	0.98 - 1.00		
561+		0.93	0.90 - 0.96		

Conclusions

- Extraction protocols can impact metabolomic data sets considerably
- Solvent system composition and pH exhibit the most dramatic effects on metabolite recovery
 - The magnitude of these effects depend on metabolite class
 - Some classes of metabolites
- The number of extraction repetitions also plays a role in enhancing metabolite recovery
 - Tradeoff longer sample prep time
 - Larger sample volumes to process (evaporate)

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Future Plans

- There's no one "perfect" extraction or LC method available capable of efficiently resolving all components or features in the metabolome
- Therefore, our goal is to continue to develop optimized extraction and chromatography protocols for various classes of liver metabolites

Acknowledgments

Penn State University

- Philip Smith
- Jared Correll
- Chris Chiaro

MRC

- Julian Griffin
- Elizabeth Stanley

National Cancer Institute

- Frank J. Gonzalez
- Kris Krausz
- Chi Chen (Univ of Minn)
- Curt Harris
- Ewy Mathe
- Majda Haznadar

NIEHS R01 ES022186

	Metastars www.metastars.org									
LATEST 28 ED	KP.DESI	GN ¹ SAMPLES ¹	CHROM ACQUISITION	ANALYSIS 7 VISUALIZATIO	N PLANET 56 ALL »					
A Carter	ati	astars		Welcome	to Metastars!	about • faq • rss ሕ				
META	BOLON		Community	user Login	New Post					
		Live search:	start typing		, or	Q Classic search				
Limit to: all time -		Life boardin.	<pre><pre><pre><pre>corev • 28 results • page 1 c</pre></pre></pre></pre>	of 2 • next >	Sort his undate -	Recent Votes				
5 1 votes answer	Umit to: all time • Sort by: update • Sort by: update • Heccent Voies 5 1 54 Tool: Pathomx - Workflow-based analysis software with metabolomics toolkit • •A: How complete is our und the metabolome, and what a metabolomics analysis tool statistics nmr pathomx written 14 days ago by Martin Fitzpatrick • 40									
2 1 votes answer	2 1 225 What's the best way to quench cellular metabolism? • A: What's the best way to quench metabolism? verse verse sample prep writen 7 months ago by Andrew Patterson + 100 · updated 1 day ago by bbmiaraceb + 50									
1 1 234 How complete is our understanding of the metabolome, and what are still required the most research?										
		metabolomics	written 4 month	hs ago by viviancai13 · 0 · updat	ed 1 day ago by bbmisraccb • 50	software with metabolomics toolkit				
2 1 votes answer	136 views	Using MetaMapp analysis	for unknowns written 4 months ago by	Andrew Patterson + 100 • update	ed 1 day ago by bbmisraccb • 50	 A: Pathomx - Worklow-based analysis software with metabolomics toolkit 				